24
2022-04
如何选择合适的刀具材料
制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。硬质合金可转位刀片已用化学气相沉积涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。刀具材料大致分如下几类:高速钢、硬质合金、金属陶瓷、陶瓷、聚晶立方氮化硼以及聚晶金刚石。我主要提下陶瓷,陶瓷用于切削刀具的时间比硬质合金早,但由于其脆性,发展很慢。但自上世纪70年代以后,还是得到了比较快的发展。陶瓷刀具材料主要有两大系,即氧化铝系和氮化硅系。陶瓷作为刀具,具有成本低、硬度高、耐高温性能好等优点,有很好的前景。国内国外产品差别很大,刀具算是高技术的消费品!一般加工中心常用有以下几种材质刀具:碳素工具钢,合金工具钢,高速钢,硬质合金,超硬材料。
24
2022-04
跟大家分享改进刀具磨损办法
刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。对于石墨刀具,普通的TiAlN涂层可在选材上适当选择韧性相对较好一点的,也就是钴含量稍高一点的;对于金刚石涂层石墨刀具,可在选材上适当选择硬度相对较好一点的,也就是钴含量稍低一点的。刀具的几何角度:石墨刀具选择合适的几何角度,有助于减小刀具的振动,反过来,石墨工件也不容易崩缺;1、前角,采用负前角加工石墨时,刀具刃口强度较好,耐冲击和摩擦的性能好,随着负前角绝对值的减小,后刀面磨损面积变化不大,但总体呈减小趋势,采用正前角加工时,随着前角的增大,刀具越锋利,但刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,采用大正前角加工时,刀具磨损严重,切削振动也较大。一般粗加工应选择较小前角刀具或负前角刀具。2、后角,如果后角的增大,则刀具刃口强度降低,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。后角越小,弹性恢复层同后刀面的摩擦接触长度越大,它是导致切削刃及后刀面磨损的直接原因之一。从这个意义上来看,增大后角能减小摩擦,可以提高已加工表面质量和刀具使用寿命。3、螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件的刃长最长,切削阻力最大,刀具承受的切削冲击力最大,因而刀具磨损、铣削力和切削振动都是最大的。当螺旋角去较大时,铣削合力的方向偏离工件表面的程度大,石墨材料因崩碎而造成的切削冲击加剧,因而刀具磨损、铣削力和切削振动也都有所增大。因此,刀具角度变化对刀具磨损、铣削力和切削振动的影响是前角、后角及螺旋角综合产生的,所以在选择方面一定要多加注意。通过对石墨材料的加工特性做了大量的科学测试,PARA刀具优化了相关刀具的几何角度,从而使得刀具的整体切削性能大大提高。1、刃口磨损。改进办法:提高进给量;降低切削速度;使用更耐磨的刀片材质;使用涂层刀片。2、崩碎。改进办法:使用韧性更好的材质;使用刃口强化的刀片;检查工艺系统的刚性;加大主偏角。3、热变形。改进办法:降低切削速度;减少进给;减少切深;使用更具热硬性的材质。4、切深处破损。改进办法:改变主偏角;刃口强化;更换刀片材质。5、热裂纹。改进办法:正确使用冷却液;降低切削速度;减少进给;使用涂层刀片。6、积屑。改进办法:提高切削速度;提高进给;使用涂层刀片或金属陶瓷刀片;使用冷却液;使刃口更锋利。7、月牙洼磨损。改进办法:降低切削速度;降低进给;使用涂层刀片或金属陶瓷刀片;使用冷却液。8、断裂。改进办法:使用韧性更好的材质或槽型;减少进给;减少切深;检查工艺系统的刚性。注意:通常当后刀面磨损达0.7毫米时,应更换刀片刃口;精加工时最大磨损量为0.04毫米。
24
2022-04
钨钢刀具的材质性能
钨钢刀具(硬质合金)具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。钨钢刀具是机械制造中用于切削加工的工具,又称切削工具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。还有特别应用的一类刀具,用于地质勘探、打井、矿山钻探,称为矿山刀具。钨钢刀片,又叫硬质合金刀片,它包括切脚机刀片,V-CUT刀片,分切刀片,数控刀片,切脚机刀片这种是以硬质合金也就是钨钢为材料的电子行业刀片。钨钢刀具主要是采用整体钨钢为基体,经过多道生产工序精加工而成。钨钢又名硬质合金,是采用优质碳化钨+钴粉料经配方配比混合后通过压制烧结制成,具有高硬度、高强度、高耐磨性和高弹性模量,属于粉末冶金工业。硬质合金作为现代工业的牙齿,硬质合金刀具对制造业的发展起着基础性的推动作用。钨钢按晶粒大小区分,可分为普通硬质合金、细晶粒硬质合金和亚细、超细晶粒硬质合金,新推出的双晶硬质合金。按主要化学成分区分,可分为碳化钨基硬质合金和碳化钛基硬质合金。碳化钨基硬质合金包括钨钴类(YG)、钨钴钛类(YT)和添加稀有碳化类(YW)三类,它们各有优缺点,主要成分为碳化钨(WC)、碳化钛(Tic)、碳化铌(NbC)等常用的金属粘接相是Co。碳化钛基硬质合金是以Tic为主要成分的硬质合金,常用的金属粘接相Mo和Ni。硬质合金具有硬度高(86~93HRA,相当于69~81HRC)仅次于金刚石、热硬性好(可达900~1000℃,保持60HRC);抗弯强度高(MPa5100)、良好的抗冲击韧性和抗腐蚀性极高的化学惰性等一般合金刀片所没有的特性。
24
2022-04
刀具冰冷处理工艺的意义
据了解,刀具的冷处理工艺是指马氏体转变终止点将降到0℃以下低温,淬火后组织中含有较多数量的残余奥氏体,为使残余奥氏体转变为马氏体,将淬火后的工件放到寒剂或制冷机中继续冷却的做法。冰冷处理温度应根据钢材的化学成分(Mf点)来选定。对于大多数钢材来说干冰、酒精混合物(-78℃)即可满足要求。冰冷处理应在淬火后立即进行,以免长期放置导致残余奥氏体产生稳定化而影响冷处理效果。一些形状复杂的工件为避免冷处理时产生裂纹,可经一次回火后在冷处理。对于一些尺寸稳定性要求更高的工件,如螺纹量规等,常需两次冷处理。冷处理必须进行回火或时效,以消除所形成的应力及稳定新生成的马氏体组织。工件在冰冷处理时无需保温,只当其心部达到寒剂温度即可(一般1~2h)。冰冷处理后工件从寒剂中取出,在空气中缓慢升温至温至室温后,在进行回火处理。冰冷处理温度多数在-70℃~-80℃为主,选择冰冷处理的温度主要是根据钢的MS(马氏体转变开始温度)和Mf(马氏体转变终了温度)温度进行的,也跟零件的技术要求有关。Ms〈T〈Mf。并不是温度越低越好,只要满足技术要求即可。低碳合金渗碳钢多为-70℃~-80℃。冰冷处理工艺有他自身存在的价值,通过冰冷处理工艺加工过的机器,有其他机器无法比你的特点。如空气涡轮制冷机是根据压缩空气膨胀制冷基本原理制造,它的特点显著,第一,制冷速度快,能迅速达到工艺温度。第二,环境无污染,制冷介质为压缩空气。第三,工作温度范围宽,无霜。第四,冷冻机、低温箱分离,便于升级改造。最主要的是它操作简单,维修方便。刀具冰冷处理工艺是根据钢材的化学成份进行科学制造的,这些技术应用到刀具、量具、精密仪器上,不仅提高了产品的使用价值,也大大提高了工作效率。
24
2022-04
刀具安全措施详细介绍
结合高速铣刀安全性标准,通过有限元计算模型的分析,为适应安全性要求,可采取以下措施:1、减轻刀具质量,减少刀具构件数,简化刀具结构由试验求得的相同直径的不同刀具的破裂极限与刀体质量、刀具构件数和构件接触面数之间的关系,经比较发现,刀具质量越轻,构件数量和构件接触面越少,刀具破裂的极限转速越高。研究发现,用钛合金作为刀体材料减轻了构件的质量,可提高刀具的破裂极限和极限转速。但由于钛合金对切口的敏感性,不适宜制造刀体,因此有的高速铣刀已采用高强度铝合金来制造刀体。在刀体结构上,应注意避免和减小应力集中,刀体上的槽(包括刀座槽、容屑槽、键槽)会引起应力集中,降低刀体的强度,因此应尽量避免通槽和槽底带尖角。同时,刀体的结构应对称于回转轴,使重心通过铣刀的轴线。刀片和刀座的夹紧、调整结构应尽可能消除游隙,并且要求重复定位性好。高速铣刀已广泛采用HSK刀柄与机床主轴连接,较大程度地提高了刀具系统的刚度和重复定位精度,有利于刀具破裂极限转速的提高。此外,机夹式高速铣刀的直径显露出直径变小、刀齿数减少的发展趋势,也有利于刀具强度和刚度的提高。2、改进刀具的夹紧方式模拟计算和破裂试验研究表明,高速铣刀刀片的夹紧方法不允许采用通常的摩擦力夹紧,要用带中心孔的刀片、螺钉夹紧方式,或用特殊设计的刀具结构以防止刀片甩飞。刀座、刀片的夹紧力方向最好与离心力方向一致,同时要控制好螺钉的预紧力,防止螺钉因过载而提前受损。对于小直径的带柄铣刀,可采用液压夹头或热胀冷缩夹头实现夹紧的高精度和高刚度。3、提高刀具的动平衡性提高刀具的动平衡性对提高高速铣刀的安全性有很大的帮助。因为刀具的不平衡量会对主轴系统产生一个附加的径向载荷,其大小与转速的平方成正比。设旋转体质量为m,质心与旋转体中心的偏心量为e,则由不平衡量引起的惯性离心力F为:F=emω2=U(n/9549)2式中:U为刀具系统不平衡量(g·mm),e为刀具系统质心偏心量(mm),m为刀具系统质量(kg),n为刀具系统转速(r/min),ω为刀具系统角速度(rad/s)。由上式可见,提高刀具的动平衡性可显着减小离心力,提高高速刀具的安全性。因此,按照标准草案要求,用于高速切削的铣刀必须经过动平衡测试,并应达到ISO1940-1规定的G4.0平衡质量等级以上要求。
24
2022-04
刀具是用于切削加工的工具
刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具还包括磨具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以“刀具”一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。这些非金属刀具材料可使刀具以更高的速度切削。1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。刀具按工件加工表面的形式可分为五类。加工各种外表面的刀具,包括车刀、刨刀、铣刀、外表面拉刀和锉刀等;孔加工刀具,包括钻头、扩孔钻、镗刀、铰刀和内表面拉刀等;螺纹加工工具,包括丝锥、板牙、自动开合螺纹切头、螺纹车刀和螺纹铣刀等;齿轮加工刀具,包括滚刀、插齿刀、剃齿刀、锥齿轮加工刀具等;切断刀具,包括镶齿圆锯片、带锯、弓锯、切断车刀和锯片铣刀等等。此外,还有组合刀具。
东莞市杰皓切削工具有限公司 版权所有
技术支持[东莞网站建设]